
## Live-cell imaging of R-loops –

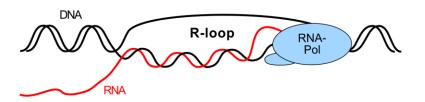
## Towards an imaging-based R-loop screening platform

Robert M. Martin

Drug Discovery Platform - Sérgio Almeida Lab GIMM November 5, 2024 - 1st TRIAD Meeting

### **Background**




- R-loops are three stranded nucleic acid structures
- DNA/RNA hybrid & a displaced ssDNA
- Form mostly co-transcriptional thread back model

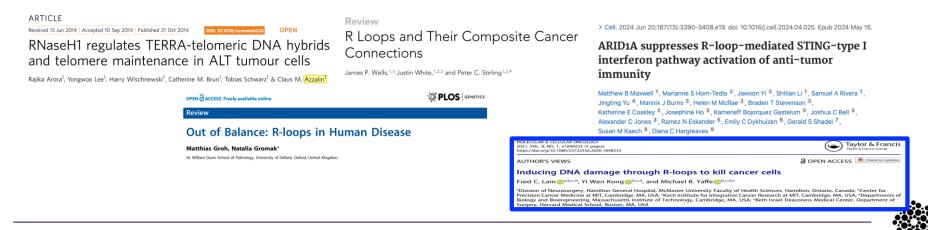
- R-loops are dynamic structures with important roles in regulating gene expression &
   pose a threat to genome stability if not kept in check
- Specific enzymes regulate R-loops by degrading the RNA moiety (RNaseH1/2) or unwinding the hybrid (helicases such as DEAD/H-box)

- **R-loop** detection by **imaging** (IF or live cells) **was** basically **unavailable** due to artefacts produced by the S9.6 antibody
  - R-loop levels in single cells or nuclear substructures such as telomeres were inaccessible



#### **Background**



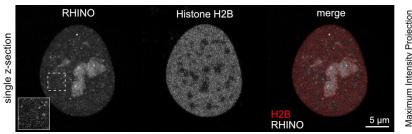

- R-loops are three stranded nucleic acid structures
- DNA/RNA hybrid & a displaced ssDNA

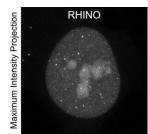
**Cell**Press

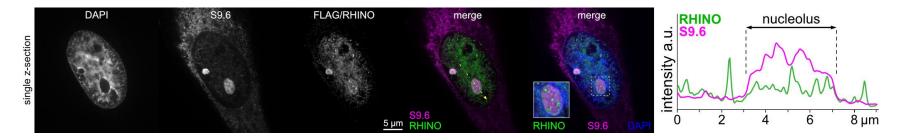
Form mostly co-transcriptional - thread back model

# R-loops have implications in human disease

Trends in Cancer





### RHINO - A novel tool to detect R-loops by live cell

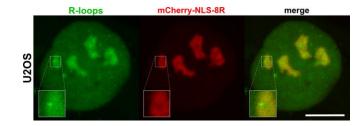

#### imaging

- synthetic tool: RNA Hybrid ImagiNg tOol (RHINO)
- triple tandem of a DNA/RNA hybrid binding domain
- fused to a bright fluorophore







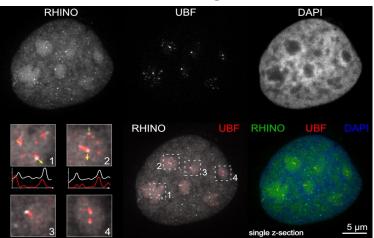



- RHINO is exclusively in cell nucleus, displays numerous foci (live & fixed)
- some nucleolar accumulation with additional bright foci
- little to no colocalization with S9.6 staining

What are the foci marked by the out tool? Which structures or sequences are



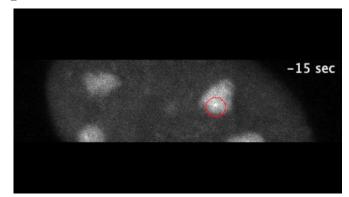
# **Labeling of nucleolar R-loops**

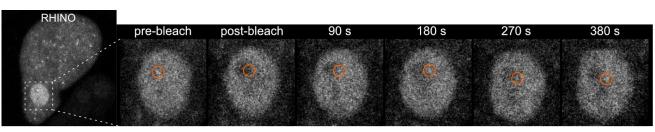


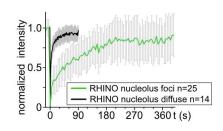

Genes Dev. 2010 Jul 15; 24(14): 1546–1558. doi: 10.1101/gad.573310 PMCID: PMC2904944 PMID: <u>20634320</u>

Loss of Topoisomerase I leads to R-loop-mediated transcriptional blocks during ribosomal RNA synthesis

Aziz El Hage, <sup>1</sup> Sarah L. French, <sup>2</sup> Ann L. Beyer, <sup>2</sup> and David Tollervey <sup>1,3</sup>


#### VT-iSIM

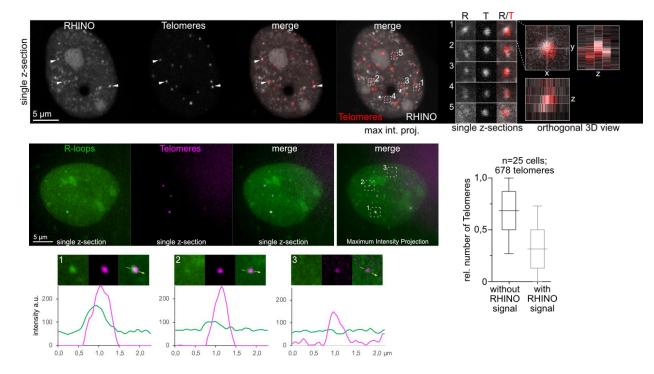




UBF is a ribosomal gene transcription factor for RNAPI



# **Labeling of nucleolar R-loops**





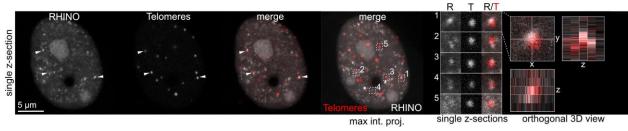



- foci of labeled R-loops present in center region of nucleoli
- nucleolar R-loops overlap with ribosomal gene transcription factor UBF (RNA Pol I)
- nucleolar R-loop foci FRAP recovery to 80% in 135 sec; elongation phase of RNAPI around 182 sec



#### **Labeling of telomeric-R-loops**

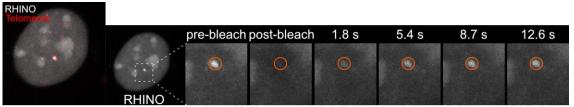


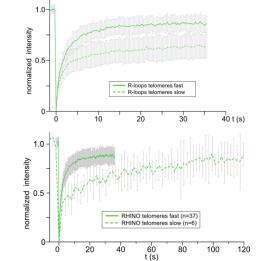

> Nat Commun. 2014 Oct 21;5:5220. doi: 10.1038/ncomms6220.

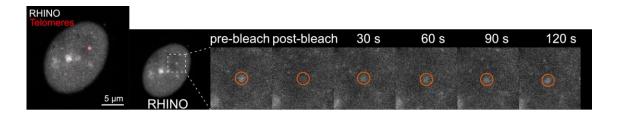
### RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells

Rajika Arora  $^1$ , Yongwoo Lee  $^1$ , Harry Wischnewski  $^1$ , Catherine M Brun  $^1$ , Tobias Schwarz  $^1$ , Claus M Azzalin  $^1$ 




#### **Labeling of telomeric-R-loops**

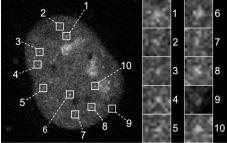




> Nat Commun. 2014 Oct 21;5:5220. doi: 10.1038/ncomms6220.

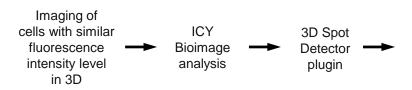
### RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells

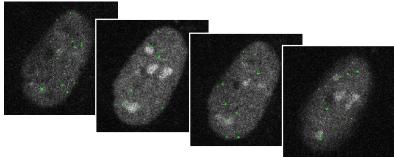
Rajika Arora <sup>1</sup>, Yongwoo Lee <sup>1</sup>, Harry Wischnewski <sup>1</sup>, Catherine M Brun <sup>1</sup>, Tobias Schwarz <sup>1</sup>, Claus M Azzalin <sup>1</sup>





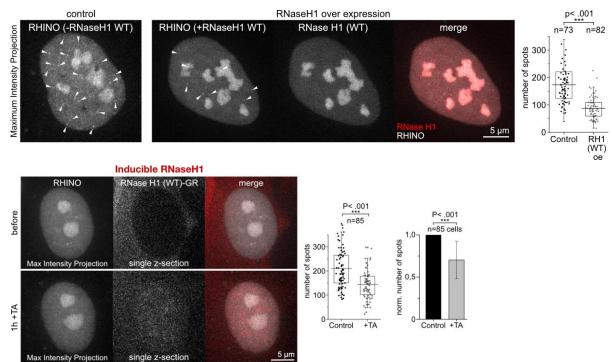




- RHINO hybrid sensor labels telomeric R-loops, would allow a quantification
- dynamics of R-loops differ at telomeres (2 fractions) and between different genomic loci


23

# **Quantification of R-loop levels in live** cells

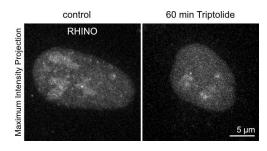


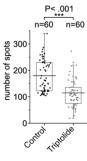

single confocal z-section








# **Quantification of R-loop levels in live** cells

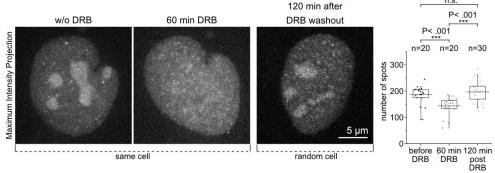



- Number of RHINO foci (RNA/DNA hybrid labeling) decrease upon RNaseH1 overexpression / induction
- Tool to quantify the effect of gene k.o. / overexpression and compounds interfering with R-loops



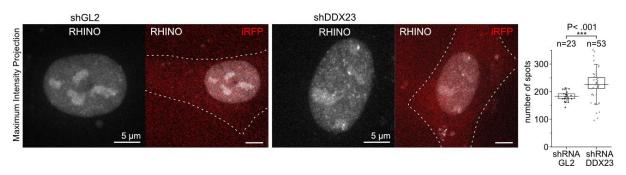
### R-loop levels decrease upon transcription inhibition






**Triptolide** inhibits RNAP I + II initiation.

- reduced number of R-loop signals
- loss of nucleolar foci
- nucleolar disintegration

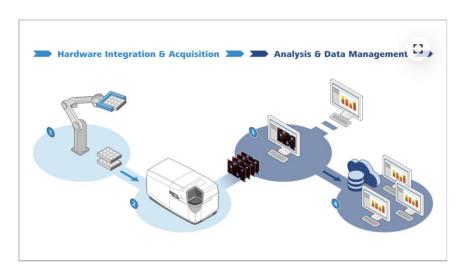



### R-loop levels decrease upon transcription inhibition



**DRB** inhibits (reversibly)

RNAP II elongation & rRNA processing.



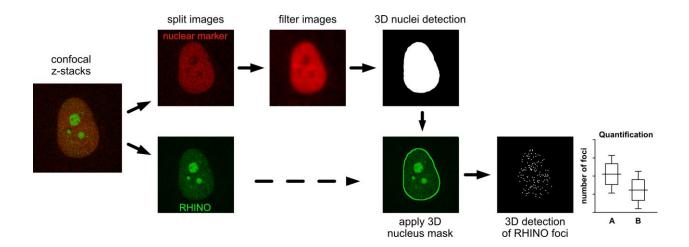

- Quantification of R-loop levels upon manipulation of R-loop formation or removal
- RHINO can be used to search for molecules altering R-loop levels



# A RHINO based imaging platform to screen for drugs affecting R-loop levels

- Establish a high content imaging approach using RHINO (live cell R-loop quantification)
- Zeiss Cell Discoverer 7 with incubation, robotic arm and liquid handling system for 96-well plates
- Automated imaging with high resolution (AiryScan); data storage & handling hub and imaging analysis pipeline






Screening of drug libraries to identify candidates, which increase or suppress R-loop levels, induce unscheduled R-loop accumulation / cytoplasmic R-loops



# A RHINO based imaging platform to screen for drugs affecting R-loop levels

- Several RHINO cell lines were established: hTert-RPE (immortalized, normal); HeLa (cancer), U2OS (Alt-cancer)
- Additional cell lines planned: pairs of cell lines from normal / cancerous tissue (breast, skin, lung)
- Cell lines allow inducible (Dox) co-expression of RHINO + marker for cell nucleus
- Allows streamlined automated imaging analysis pipeline to detect nuclear + extra-nuclear R-loops and DNA/RNA hybrids



Allows streamlined automated imaging analysis pipeline to detect nuclear + extra-nuclear R-loops and DNA/RNA hybrids



### **Conclusions**

- RHINO tool was developed to label DNA/RNA hybrids in live cells,
   in structures known to form R-loops (nucleoli, telomeres, actively transcribed genes)
- RHINO allows live cell measurements of DNA/RNA hybrids/R-loop dynamics
- Quantification of R-loops in different cell types, upon drug treatments and upon gene k.o. + over expression
- RHINO is now utilized for an imaging-based drug screening platform to find candidates of potent R-loop modulators

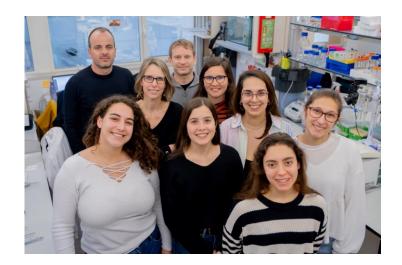
### **Perspectives**

- Screening for Tel-R-loop modulators (with Azzalin lab)
- use the RHINO screening platform for genetic screens to identify novel R-loop modulators / interactors (CRISPR libraries; siRNA libraries)
- Open the RHINO screening platform for external commercial library screens



#### :

## Summary / Conclusions


- RHINO labels DNA/RNA hybrids in live cells,
   in structures known to form R-loops (nucleoli, telomeres, actively transcribed genes)
- RHINO allows live cell measurements of DNA/RNA hybrids/R-loop dynamics
- Quantification of R-loops in different cell types, upon drug treatments and upon gene k.o. + over expression

## Future perspectives

- study R-loop dynamics in live cells (transcription of coding genes, Tel-R-loops, upon stimuli, development)
- establish RHINO based R-loop labeling as diagnostic tool in drug/candidate gene screens aiming at manipulating R-loops

#### Sérgio Almeida Lab

Anna Le Breton
Anne-Valerie Gendrel
Cristiana Morgado
Joana Figueiredo
Madalena de Almeida
Margarida Bettencourt
Maria Soutilha
Sérgio de Almeida



Former lab members

<u>Eduardo Gameiro</u>

Rita Marques

Inês Faleiro



Claus M. Azzalin Lab – GIMM

Edgar Gomes Lab – GIMM

GIMM Bioimaging Platform
José Rino and all facility members

GIMM Technology Transfer Platform
Pedro Silva













🔀 RibeMed





